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Random flows in rotating fluid layers are studied in two spatial dimensions. The
Eulerian and Lagrangian correlation functions for such flows are analysed by ap-
proximating the actual two-dimensional flow by an autonomous system consisting of
many overlapping and mutually convecting vortices. Analytical expressions for the
full space–time-varying Eulerian velocity correlation are derived solely in terms of
flow parameters. An extension of the arguments giving these results also allows the
derivation of analytical expressions for the Lagrangian velocity correlation function.
The analytical results are supported by a numerical simulation.

1. Introduction
The basic properties of low-frequency fluctuations in a rotating flow layer can be

described by the nonlinear set of equations

∂v

∂t
+ v · ∇v = −g∇h− 2Ω× v, (1.1)

expressing the acceleration of a fluid element in terms of the gradient of the hydrostatic
pressure p = ρgh and the Coriolis force, ignoring a viscosity term and friction with
the supporting bottom surface. In addition there is the equation of continuity, which
here takes the form

∂h

∂t
+ ∇ · (hv) = 0, (1.2)

where v = v(r, t) is the horizontal velocity being a function of time t, the position
vector is r = {x, y}, h is the local depth of the fluid layer, g is the acceleration due
to gravity and Ω is the angular velocity of the rotation. The analysis is carried out
in two spatial dimensions with the restriction that all relevant horizontal scales are
much larger than h. Rewriting (1.1) as

v = −g∇h×Ω
2Ω2

+
1

2Ω2

(
∂

∂t
+ v · ∇

)
(Ω× v), (1.3)

the first approximation for v has the form

v = −g∇h×Ω
2Ω2

, (1.4)
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valid in the limit of large Ω. The vertical fluid displacement h here takes the role of a
stream function for the flow. Within this approximation a fluid element is inertialess
and assumes the velocity v instantaneously when released in the flow.

Taking the first iteration, by inserting (1.4) in the right-hand side of (1.3) the
standard result is obtained

∂

∂t

(
∇2η − 1

λ2
R

η

)
− 2Ωλ2

R(∇η × ê) · ∇∇2η = 0, (1.5)

with η ≡ h̃/h0 where h = h0 + h̃ was introduced with h0 being the unperturbed fluid
depth. The unit vector ê is in the Ω-direction. Only terms up to second order were
retained to be consistent with the iteration. The equation is characterized by the
spatial scale (the Rossby radius) λR = (gh0)

1/2/(2Ω). The model equation is inherently
nonlinear; if the equations are linearized, the trivial statement ∂η/∂t = 0 results. The
equation is a special case of the Charney equation (Charney 1948), which has been
widely used for analysing the motion of, for instance, flows on a rotating planet.
The applicability of the equation to other problems was discussed by e.g. Hasegawa,
MacLennan & Kodama (1979) and Horton & Hasegawa (1994).

1.1. Discussion of the model flow

Since (∇η × ê) · ∇η = 0, equation (1.5) is readily rewritten as

∂

∂t
ζ + v · ∇ζ = 0, (1.6)

with ζ = ∇2η − η/λ2
R . Equation (1.6) is the continuity equation for the scalar

quantity ζ(r, t) which in turns determines η(r, t) and the self-consistent incompressible
velocity field v(r, t) = −2Ωλ2

R∇η(r, t) × ê. It follows that ζ is constant along the
characteristics of (1.6). A vortex method for solving (1.5) is then readily found by
approximating v(r, t) by a velocity field generated by a collection of delta-functions
whose support approximates that of ζ. Each of these delta-functions is convected by
the net flow and contributes with a velocity field corresponding to a point vortex. The
velocity v is calculated by a sum of the contributions from the vortices, where the
contribution from an individual vortex with strength A is obtained from the solution
of ∇2η`(r)− η`(r)/λ2

R = −A`δ(r − r`). In two dimensions the solution is

η`(r) = (A`/2π)K0(|r − r` |/λR), (1.7)

where K0 is the modified Bessel function of the second kind and zero order, as in the
problem considered by Morikawa (1960).

The velocity deduced from the stream function (1.7) will have the form of a vortex.
The flow field is expressed here in terms of a sum of velocity contributions from the
individual vortices:

v(r, t) =

N∑
`=1

u`(r). (1.8)

An autonomous model is obtained by requiring that individual structures are con-
vected by the flow generated by all the others,

dr`(t)

dt
=

N∑
k 6=`

uk(r`). (1.9)
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Equations (1.8) and (1.9) are conveniently rewritten as

v(r, t) = −2Ωλ2
R∇Φ× ê = −2Ωλ2

R

N∑
k=1

∇ηk(r)× ê, (1.10)

and

dr`(t)

dt
= −2Ωλ2

R

N∑
k 6=l

∇ηk(r`)× ê. (1.11)

The introduction of the stream function, Φ =
∑N

k=1 ηk(r), ensures that the flow is
incompressible, ∇ · v(r, t) = 0. Onsager’s (1949) line-vortex model is a special case of
(1.10)–(1.11) with the choice ηk(r) = Ak ln(|r |). Formally, this case can be obtained by
retaining only the ln(r) term in an expansion of K0(r).

It is well known that the dynamic system of structures described by (1.10)–(1.11)
can be put in a Hamiltonian form. Introducing ηk = AkF(| r |), where F(r) can be
taken as an arbitrary function and Ak is a constant, the result is

H =
∑
`>k

A`AkF(|r` − rk |) . (1.12)

The conservation of the Hamiltonian (1.12) is not restricted to particular choices
of F such as K0(r) or ln(r). We use here the general form F to emphasize that
the Hamiltonian property is retained, even when the singularity of the K0-function
is smoothed out for practical applications. The Hamiltonian (1.12) accounts for
an effective potential energy of the interacting structures. This is made evident by
considering the particular line vortex model. The system does not possess kinetic
energy in the usual sense. The Hamiltonian (1.12) applies in the absence of boundaries.
The presence of for instance periodic boundary conditions requires the introduction
of a modified expression for F .

From the construction it is clear that individual structures, as specified by ηk in
(1.10) and (1.11) or by F in (1.12), are not distorted by the flow. However, any
macroscopic arrangement of many individual structures will be distorted and sheared
by the flow. The velocity field, (1.10), will therefore have properties in common with
flows evolving according to the two-dimensional Euler equations. Any flow described
by (1.10) with a smooth initial condition (implying smooth basic vortices F(r) in
(1.12)) will remain smooth for all later times, i.e. no discontinuities will develop.
These properties are consistent with those characterizing flows described by the Euler
equation in two dimensions. A general review of vortex methods is given by for
instance Leonard (1980) or Sarpkaya (1989), where the present model represents a
special case. Our modelling of the flow by a superposition of vortices is of course not
unique, for instance for a driven dissipative system a kinetic simulation as used by
e.g. Fung et al. (1992) may be advantageous.

The paper is organized as follows. In §2 we discuss the applications of the model for
describing turbulent diffusion. In §3 a simplified derivation is presented for results first
obtained by Wandel & Kofoed-Hansen (1962) for the case of two-dimensional flows.
Particular emphasis is given to the time variation of the Eulerian and Lagrangian
velocity auto-correlation functions. In §4 the limitations of this analysis are pointed
out and a remedy, based on conditional averaging of the fluctuating velocity, is
suggested. In §5 the numerical scheme for the simulations is discussed and results are
compared with the analytical expressions. Finally §6 contains our conclusions.
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2. Turbulent diffusion
The model discussed in the introduction is applied to the study of turbulent

transport, in particular to the dispersion of a test particle with respect to its origin
of release. Even for idealized conditions, where homogeneous isotropic turbulence
is considered, this is a rather complicated problem. Readily measurable quantities
such as correlation functions are Eulerian, i.e. they are obtained in fixed positions
or with probes moving along prescribed trajectories. However, the relevant statistical
information needed for analysing particle dispersion is Lagrangian, i.e. obtained along
particle orbits. Consequently, the analysis of turbulent transport can be considered
as deriving the desired Lagrangian statistical quantities on the basis of measured
Eulerian characteristics of the random fluctuations.

The simplest relevant quantity describing the motion of a particle is its mean-square
displacement, 〈r2〉, with respect to its initial position. For short times after release we
have r ≈ v t, i.e.

〈r2〉 ≈ 〈v2
L〉 t2 , (2.1)

where 〈v2
L〉 is the mean-square Lagrangian velocity, to be determined by sampling

along particle orbits. Equation (2.1) shows that the transport is convection dominated
for small time scales. For incompressible flows (Tennekes & Lumley 1972), the mean-
square velocity obtained by Eulerian sampling, 〈v2

E〉, is identical to the mean-square
velocity, 〈v2

L〉, obtained from Lagrangian measurements. In this case the evaluation
of (2.1) becomes simple. The subscripts on 〈v2〉 will be omitted from here on. For
arbitrary times, 〈r2〉 is expressed in terms of the Lagrangian velocity correlation
function RL(τ) = 〈v(r(t)) · v(r(t+ τ))〉/〈v2〉 as

〈r2〉 = 2〈v2〉t
∫ t

0

(1− τ/t)RL(τ)dτ , (2.2)

which contains (2.1) in the limit of small t where RL(τ) ' 1. For large times, t � τL,
(2.2) gives a diffusion-like dispersion

〈r2〉 ≈ 2〈v2〉τL t , (2.3)

where τL ≡
∫ ∞

0
RL(τ)dτ is the Lagrangian integral time scale. An early attempt to

make predictions directly for the correlation function was made by Hay & Pasquill
(1960). Later, Wandel & Kofoed-Hansen (1962) provided a theoretical basis for
their hypothesis. Rather than considering an actual turbulent flow as described by the
three-dimensional Navier–Stokes equation, Wandel & Kofoed-Hansen approached the
problem using an autonomous system, which for certain parameters have turbulence-
like features. Their results were recognized in the literature (see e.g. Panofsky &
Dutton 1984; McComb 1990).

In the present study we perform a numerical solution of a model which ap-
proximates the two-dimensional Euler equations for initial conditions which generate
isotropic homogeneous random flows. Numerical results are compared with analytical
expressions for the Eulerian as well as the Lagrangian correlation functions. A partic-
ularly interesting feature of the analysis of Wandel & Kofoed-Hansen (1962) and its
extensions is that it also suggests an expression for the temporal variation of the Eule-
rian correlation for a given wavenumber spectrum, E(k), and the variance, 〈v2〉, of the
velocity fluctuations. The analysis of Wandel & Kofoed-Hansen (1962) will be consid-
ered and some of its shortcomings pointed out. The convection of passive test particles
by a collection of unshielded point vortices was investigated for instance by Babiano
et al. (1994) although with an emphasis different from the one in the present work.
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3. Analytical results in two spatial dimensions
The present analysis is based on the assumption that the vortices are placed

randomly in the plane. The probability of finding a vortex in a small rectangle
dxdy is assumed to be µdxdy, where µ is the density of vortices, independent of
the positions of all the other vortices. This random distribution can be imposed
initially. It is then assumed that this random spatial distribution also prevails during
the subsequent temporal evolution. With this assumption the probability densities
and correlation functions of the fluctuating flow velocity are readily obtained by
standard methods (Rice 1944, 1945). The approximation can be justified in the limit
of many overlapping vortices, i.e. the limit where the flow is characterized by many
degrees of freedom. Here it can be argued that a small subset of the vortices can
be removed from the flow without significantly changing its statistical properties,
see also the discussion in Appendix A. In particular, if vortices which at a certain
instance have velocities and positions in a small volume element around v0 and r0,
are decoupled from the interaction, we might expect that the overall flow statistics
remain unchanged. In this sense a weak statistical coupling between vortices can be
argued for small values of |H |. The assumption clearly breaks down for a low vortex
density. The assumption of ‘weak independence’ outlined here has implications for
the prediction of measurable quantities and the conjecture can therefore be tested a
posteriori. See also the discussion in the Conclusions.

3.1. Probability densities

For the following analysis it is natural to assume that both polarities of a vortex (high-
and low-pressure) are equally probable. The two polarities will have opposite angular
rotations. With the assumption that the positions of the vortices are independent, the
probability density for the stream function is readily obtained by standard methods
(Rice 1944):

P (Φ) =
1

2π

∫ ∞
−∞

exp

(
−iΦγ + µ

∫ ∞
−∞
{cos[γη(r)]− 1}dr

)
dγ, (3.1)

where the basic structure η was introduced in (1.7). Here and in the following we
use the abbreviation

∫ ∞
−∞ dr for

∫ ∞
−∞
∫ ∞
−∞ dxdy. The density of structures µ = 〈N〉/L2

is introduced in terms of the average number, 〈N〉, of structures in the realizations.
Similar expressions for the probability densities for the two velocity components, P (vx)
and P (vy), are readily obtained. It can be demonstrated analytically (Rice 1944) that
P (vy) approaches a Gaussian distribution when µ→ ∞ as expected from the central
limit theorem. Two-point distribution functions and also higher-order distributions
can be obtained similarly. These approach multidimensional Gaussian distributions
in the limit µ→∞.

3.2. Spatial correlations

The elements of the two-point velocity correlation tensor

Rj`(ξ) ≡ 〈vj(r)v`(r − ξ)〉 = g(ξ)δjl + [f(ξ)− g(ξ)] ξjξ`/ξ
2

associated with the model (1.10)–(1.11) can be expressed in terms of the corre-
sponding correlation function for the stream function RΦ(ξ). The longitudinal and
lateral correlation functions are given by f = −(1/ξ)dξRΦ(ξ) and g = −d2

ξRΦ(ξ),
respectively. The implied relation g = ∂ξ(ξf) will also remain valid when the full
space–time variation of f(ξ, τ) and g(ξ, τ) is considered. Note that isotropic and
homogeneous two-dimensional turbulence does not possess a lateral integral scale
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length,
∫ ∞

0
g(ξ)dξ = 0. This merely states that back flow is necessary somewhere

in the plane; g(ξ) must become negative for some values of ξ in order to keep
the net flux zero. A longitudinal integral scale length can, however, be obtained as
`E ≡

∫ ∞
0
f(ξ)dξ.

The correlation function for the stream function can in turn be calculated directly
without use of the two-point distribution function. With the assumption that both
polarities of a vortex are equally probable, the correlation function of the stream
function becomes simply (Rice 1944)

RΦ(ξ) = µ

∫ ∞
−∞
η(r)η(r − ξ)dr, (3.2)

where µ now represents the density of vortices irrespective of polarity. The isotropy
of η implies that RΦ(ξ) = RΦ(ξ). The correlation RΦ(ξ) is unaffected by the transition
to the Gaussian limit for µ→∞, provided the amplitudes of the individual structures
go to zero simultaneously so that the mean-square fluctuation level remains constant.

The wavenumber spectrum of the random spatial stream function variation is
obtained by Fourier transforming the corresponding correlation function. Denoting
this spectrum EΦ(k), the elements of the velocity power spectral tensor are readily
expressed as

Ej`(k) = k2EΦ(k)

[
δj` −

kjk`

k2

]
. (3.3)

From here on we assume that a constant 4Ω2λ4
R is included in EΦ. With the

definition (3.3), the energy density is obtained from
∫ ∞
−∞ Ejj(k)dk using the summation

convention. For the present problem where the basic vortex structure is described by
η(r, t) = (A/2π)K0(|r|/λR), we find after some elementary algebra the power spectrum

EΦ(k) =
C

(1 + (kλR)2)2
, (3.4)

where C is a constant determined by the actual flow parameters including the energy
density. The corresponding velocity power spectrum becomes

E(k) ≡ Ejj(k) = k2EΦ(k) =
Ck2

(1 + (kλR)2)2
. (3.5)

The divergence of the integral over all k is associated with the singularity at the origin
of the basic vortex determined by the derivative of the K0-function, where dK0(r)/dr =
−K1(r). For realistic models this singularity will be remedied by rounding-off the
K0-function at its origin. In figure 1 we give the analytical wavenumber spectrum
obtained for the model used in the present study. The results for two different cut-offs
are illustrated. As the cut-off radius decreases, the velocity spectrum develops a
1/k2-subrange.

It is interesting that using thermodynamic arguments for a truncated spectral
representation with discrete wavenumbers, Hasegawa et al. (1978) obtained an
equilibrium spectrum for the stream function of the form

EΦ(k) =
C

(1 + (kλR)2)(α+ β(kλR)2)
, (3.6)

with α−1 and β−1 being two temperatures and where one can attain negative values.
There is here no divergence in the integrated velocity spectrum because of the implied
truncation in wavenumbers. The result (3.4) does not imply any such truncation,
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Figure 1. Analytically obtained power spectrum E(k) as function of wavenumber for the fluctuations
in velocity. The solid line shows the case used in this work where the singularity of the K0-function
is removed by a parabolic fit within a circle with radius 0.05 around the origin of the vortices, for
the dashed line the radius is 0.1.

but it is interesting to note that it coincides with (3.6) for the case where α = β.
The derivation of (3.6) is based on the conservation of energy and an equivalent of
enstrophy for a system described by the basic equation (1.5). In order to recover a
spectrum like (3.6) with α 6= β, the analysis of a discrete vortex model must be based
on a probability density for the spatial distribution which has a preference for the
sign of the nearest-neighbour vortices. This analysis has not been carried out.

The standard model for the unshielded line vortex model can be obtained in the
limit where λR → ∞ giving EΦ(k) = C/k4 or E(k) = C/k2. The integral over the
spectrum for the unshielded vortices receives a diverging contribution both for large
and for small wavenumbers. The spectra for the two models are equivalent for large
wavenumbers, differences appearing for k 6 1/λR .

3.3. The Eulerian correlation function

Consider first the normalized spatial correlation function expressed as the Fourier
transform of the reduced velocity power spectrum

R(r) ≡ Rjj(r) = f(r) + g(r)

=
1

2πσ2

∫ ∞
−∞

E(k)eik · r dk . (3.7)

From here on we assume the normalization R(0) = 1, and therefore also f(0) = g(0) =
1/2. Consider now a frozen velocity field, with all vortices at fixed positions, being
swept with constant velocity u past a stationary observer. A correlation function Ru(t)
is obtained by correlating the velocities at the reference position at two different times
separated by t,

Ru(t) =
1

2πσ2

∫ ∞
−∞

E(k)eik · ut dk . (3.8)
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This case corresponds to having r` = r0` + ut in (1.8) with r0` being uniformly
distributed in space. In the actual flow different groups of vortices can be distinguished
by having different velocities, but each group has the same wavenumber spectrum
E(k) and associated spatial correlation function given by (3.7). The one-point two-time
velocity correlation function is now approximated by sum of the respective individual
correlations given by (3.8), summed over all velocities u. This summation is the
basic assumption of our analysis. It is exact if the various groups can be considered
independent. Physically it can be justified if one group of vortices, all with velocities
within a narrow range, can be removed from the flow without significantly affecting
its overall statistical properties. Clearly, this can never be justified for small vortex
densities, and therefore only the limit µ large will be considered in the following.

In the actual flow the vortex velocities u are statistically distributed. Their prob-
ability density is a measurable quantity and has an explicit analytical expression
similar to (3.1) within the present approximations. Particularly, in the limit of µ→∞,
this probability density can safely be assumed to be a Gaussian with zero mean and
variance σ2 = (1/2π)

∫ ∞
−∞ E(k) dk. After averaging over all values of u the expectation

value for R(t) consequently becomes

R(t) =
1

2πσ2

∫ ∞
−∞

E(k)〈eik · ut〉 dk

=
1

2πσ2

∫ ∞
−∞
E(k)

∫ ∞
−∞

eik · utP (u) du dk

=
1

σ2

∫ ∞
0

E(k)e−(σkt)2/4k dk , (3.9)

with P (u) = (πσ2)−1 exp(−u2/σ2). More generally we can determine the entire space–
time-varying correlation function, obtainable by correlating velocity fluctuations at
two fixed spatial positions with separation r at two times with relative delay t. With
the assumption of random translations with constant but random velocities, as in
(3.9), the result is

RE(r, t) =
1

σ2

∫ ∞
0

E(k)J0(kr)e
−(σkt)2/4kdk , (3.10)

where the subscript E emphasizes the Eulerian sampling of the fluctuations. The
result (3.10) corresponds to the one obtained by Wandel & Kofoed-Hansen (1962),
but the underlying arguments were also proposed earlier by Kraichnan (1959). The
interesting aspect of this result, shown in figure 2(a), is that it allows a prediction of
the full space–time-varying Eulerian correlation function on the basis of the energy
spectrum, E(k), alone. For t = 0 expression (3.10) is just a different presentation
of (3.8). Note the time scaling σt implied in (3.10), i.e. an increase in the standard
deviation σ by an increase in energy density of the fluctuations can be accounted for
simply by rescaling the temporal variable.

3.4. The Lagrangian velocity correlation function

The arguments can now be applied in the same way for the Lagrangian correlation
function. First we consider the limiting case of a frozen flow, where the velocity field
is formally taken to be a function of position only. This extreme case is similar to the
one argued to derive (3.9), since the expression does not distinguish between a moving
flow and a fixed observer or a fixed (i.e. frozen) flow and a moving particle. The
result in (3.9) is thus also applicable, with the present arguments, for the Lagrangian
correlation RL(t) for frozen flows.
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Figure 2. Analytical result for the Eulerian correlation functions for the parameters λR = 2/3

and µ = 12, for vortices of strength ±1/
√

3: (a) the result based on an approximation used by
Wandel & Kofoed-Hansen see (3.10), (b) result obtained by numerical solution of (4.5)–(4.6). The
correlation functions are shown in their unnormalized form to also bring out the analytical value of
〈v2〉 given by the functional values at the origin. The Eulerian length scale is obtained numerically
as `E ≈ 0.81.

We now let the vortices surrounding the test particle be moving also, i.e. the local
velocity at the test particle position r(t) becomes an explicit function of time, v(r(t), t).
The velocities of test particles with respect to vortices are no longer the same as their
rest-frame velocities, and it is the distribution of relative velocities which is needed
when estimating the temporal variation in velocity experienced when the test particle
passes the individual vortices constituting the flow.

It can safely be assumed that the statistical distribution of the velocities of the
vortices constituting the flow surrounding the test particle is a Gaussian just like that
of the test particles themselves and with the same standard deviation, σ. Following
Wandel & Kofoed-Hansen (1962) we postulate that the distribution for the relative
velocities, as an approximation, can also be taken to be a Gaussian, with standard
deviation σ

√
2. This result would be exact for the case where the two velocities were

independent. For distant vortices the assumption is easily justified, but for nearby
vortices at relative distances 6 λR the two velocities are correlated. The assumption
thus amounts to ignoring this correlation, but only when estimating the characteristic
function. The hypothesis can be tested by comparing the results it implies with
numerical simulations of the problem. This comparison will be carried out in §5 of
this paper.

With the present assumptions, the Lagrangian auto-correlation function becomes

RL(t) =
1

σ2

∫ ∞
0

E(k)e−(σkt)2/2kdk . (3.11)

The results (3.9)–(3.11) are identical to those obtained on the basis of an analysis
developed by Wandel & Kofoed-Hansen (1962) and Kofoed-Hansen & Wandel (1967)
who presented their results in terms of component spectra. Their final expressions
account for the dominating terms in a series expansion in a small parameter which
they considered as being analogous to an effective Reynolds number, interpreted as
the effective number of degrees of freedom for the flow. Note that the time scaling σt
implied in (3.10) is retained in (3.11). The result (3.11) was obtained without explicit
use of Corrsin’s (1960) hypothesis, since for the present problem the spectrum E(k)
is obtained from the Fourier power transform of an individual structure, thus being
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a deterministic quantity and therefore unaffected by the ensemble averaging. See also
the discussion by Weinstock (1976). Elements of the foregoing analysis were proposed
by Kraichnan (1959).

An interesting result of the foregoing analysis is that the micro time scales associated
with the Eulerian and the Lagrangian correlation functions are related as τE =

√
2τL

to the present approximation, as obtained by comparing (3.10) and (3.11).
The results (3.10)–(3.11) are simple, but it was implicitly assumed that the char-

acteristics of the flow change only little during the time it takes a fluid element to
propagate a distance which characterizes the flow, typically an Eulerian integral scale
length or in our case the width of a vortex. During this time interval a test particle
is taken to follow a straight orbit, r ≈ ut, corresponding to the limit (1.2). To be
specific we can give an estimate for the error between the actual velocity a vortex
will experience and the straight line orbit approximation used here. This error can be
expressed as

e2 = 〈(u− v(r(t), t))2〉
= 2〈v2〉(1− RL(t)). (3.12)

The averaging is performed over all realizations using that u = v(r = 0, t = 0) has the
same statistical distribution as the flow velocity. For short times the error e is small
and the approximation worth pursuing, i.e. the correlation functions may approximate
the numerical results well for small time delays. In particular, the Taylor microscale
may be well represented by the results. For large times, the error in the estimated
velocity is 2〈v2〉. In this limit we expect a diffusion-like dispersion from (2.3), and the
approximation r ∼ ut overestimates the displacement of the vortices with respect to
their origin of release. Consequently exp(ik · r) with r ∼ ut oscillates too rapidly in
(3.9) and the integral therefore decreases too fast.

We can also directly estimate the displacement error e2
r in using r = ut as an

estimate for the actual displacement r. We find after some simple algebra that

e2
r ≡ 〈(ut− r(t))2〉 = 〈u2〉t2 + 〈r2〉 − 2t〈u · r(t)〉

= 〈v2〉
(
t2 − 2

∫ t

0

τRL(τ)dτ

)
, (3.13)

where (2.2) was used, noting that 〈u2〉 = 〈v2〉. For short times we approximate
RL(τ) ≈ 1− 1

2
τ2/T 2 where T is the Lagrangian micro time scale. In this limit the t2-

terms cancel and (3.13) varies like 1
4
〈v2〉t4/T 2 and for times t � T the approximation

r = ut is good. In the long time limit we have e2
r ≈ 〈v2〉t2 and the approximation is

likely to be inadequate.
In order to improve the accuracy of our estimates for the velocity correlations

at time separations comparable to or exceeding the Taylor microscale, we use an
approximation based on conditionally averaged paths as proposed by Pécseli &
Trulsen (1991a) see also Appendix A.

4. Conditionally averaged flows
To generalize and improve the results of the foregoing section, the ideal procedure

would be to average all actual trajectories r(t) in the individual realizations when
calculating the characteristic function. In principle this could be done by assuming
that the velocity and its first N spatial derivatives are given at a certain position at
a certain time t0, with N being arbitrarily large. By a Taylor expansion, it is then
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possible to estimate with arbitrary accuracy the (Eulerian) flow a test particle or a
vortex will experience in the vicinity of its reference point, r0, at t0 as well as at later
times t = τ + t0. This estimate (or conditional average) is denoted v̌(r0 + r, t0 + τ)
and is a space–time-varying quantity with the actual (conditioned) flow field being
v(r0 + r, t)c = v̌(r0 + r, t) + ϑ(r0 + r, t), where ϑ is a randomly varying correction, with
ϑ(r0, t0) = 0 in the conditionally selected subensemble. Evidently, the conditional
average approximates the actual path better, the smaller the correction ϑ is. The
actual path of a passive test particle r = r(t) =

∫ t
t0
v(r0 + r(τ), τ)c dτ relative to the

initial position r0 in a given conditioned realization is approximated by the path
which is obtained by integrating the velocity estimate v̌(r0 + r, t) as suggested by
Pécseli & Trulsen (1991a). Intuitively we expect this approximation to be improved
as more terms are included in the Taylor expansion, i.e. higher-order derivatives
are included in the imposed conditions. An approximation to the (unconditioned)
characteristic function 〈exp[ik · r(t)]〉 is subsequently obtained by averaging over all
the imposed conditions. This averaging requires all relevant joint probability densities
to be known. Within the present model these can in principle be obtained by the
same calculations as used in deriving (3.1). To illustrate the procedure we use here the
lowest-order approximation where a condition is imposed only on the magnitude of
the velocity and its direction, leaving spatial and temporal derivatives unconditioned
and the problems mentioned before do not arise. It is not a priori evident how many
imposed conditions are necessary in order to have an adequate representation of
the actual path in a given realization. It turns out, however, that the lowest-order
approximation is sufficient to obtain a good agreement between theoretical correlation
functions and those obtained from numerical simulations (Pécseli & Trulsen 1991b).

For the general case a series expansion for the kth component of v̌ is introduced
(Adrian 1979) as

v̌k(r0 + r, t0 + τ) = Ak`(r, τ)v`(r0, t0)c + Bk`m(r, τ)v`(r0, t0)cvm(r0, t0)c + · · · , (4.1)

with (r0, t0) denoting the reference position and time and the velocity components
entering the right-hand side refer to the imposed condition. There is no constant
term in the series because of the assumed homogeneity and isotropy. Physically,
v̌(r0 + r, t0 + τ) is the average velocity at position r0 + r, at time t0 + τ, given the
condition that the velocity is v(r0, t0)c at the position r0 at time t0. Retaining only
the first term in the expansion (4.1), the coefficient tensor Ak`(r, τ) is determined by
minimizing the mean-square error

e2
k = 〈(v̌k(r0 + r, t0 + τ)− vk(r0 + r, t0 + τ))2〉, (4.2)

for all k. The series expansion for v̌k given in (4.1) is inserted into (4.2) and the result
minimized by requiring ∂e2

k/∂Ak` = 0 for all k and `, with details given by e.g. Adrian
(1979). The result is expressed in terms of the Eulerian correlation function as

Ak`(r, τ) =
1

σ2
〈vk(r0, t0)v`(r0 + r, t0 + τ)〉 . (4.3)

For the case where the velocity fluctuations constitute a Gaussian random process,
we obtain the exact result for the conditional average by retaining only the first term
in the expansion, a limit considered also by Smith (1968). The present result is best
expressed by introducing a stream function Φ̌(r, t) so that the velocity estimate is
v̌(r, t) = {∂yΦ̌,−∂xΦ̌}. The result is then

Φ̌ = 2ṽrf(r, τ) sin θ (4.4)
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Figure 3. Time variation of řṽ(t) for different ṽ. The standard deviation is 〈v2〉1/2 ≈ 7.81 for this
particular case.

where ṽ =| v(r0, t0)c | refers to the imposed condition, f(r, τ) is the normalized space–
time-varying longitudinal correlation function, and θ is the angle with respect to the
direction of the conditioned velocity vc. A conditioned path is obtained implicitly by
the integral

řṽ(t) = ṽ

∫ t

t0

2

ř2
ṽ (τ)

∫ řṽ(τ)

0

ρRE(ρ, τ)dρdτ, (4.5)

where the direction of řṽ(t) is given by the direction of the conditioned veloc-
ity v(r0, t0)c. We used the relation g = ∂r(rf) to introduce the reduced Eule-
rian velocity correlation RE(r, t) = f(r, t) + g(r, t) = 2f(r, t) + r∂rf(r, t) to give
f(r, t) = (1/r2)

∫ r
0
ρRE(ρ, t)dρ. The path in (4.5) is labelled by ṽ to emphasize the

imposed condition. For small t we have řṽ(t) ≈ ṽt. We note that the integral∫ řṽ(τ)
0

ρRE(ρ, τ)dρdτ → 0, as řṽ(t) → ∞, as readily obtained using the expressions for
f and g given before in terms of the correlation function of the stream function.
Consequently f decreases faster than 1/r2.

The time variation of řṽ is shown in figure 3 for various values of ṽ. We now
assume as an approximation that an individual vortex in a given realization follows
řṽ(t). In order to obtain the characteristic function we then average exp[ik · řṽ(t)] over
all realizations of ṽ and let the reference positions be uniformly distributed. Here we
can assume that for cases of interest the velocity probability density is a Gaussian
with zero mean and known standard deviation, i.e. P (ṽ) = 2(ṽ/σ2) exp(−(ṽ/σ)2).
More generally the probability density can be obtained from results corresponding
to (3.1). The direction of the imposed conditioned velocity is uniformly distributed in
the interval {0, 2π}. With the present approximation the result is a closed expression
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for RE:

RE(r, t) =
1

σ2

∫ ∞
0

kE(k)J0(kr)

∫ ∞
0

2(ṽ/σ2) exp(−(ṽ/σ)2)J0(křṽ(t))dṽdk, (4.6)

where řṽ(t) is given by (4.5). Equations (4.5)–(4.6) are solved numerically by an
iterative procedure, in general. The initial condition at t = t0 is given explicitly by the
spectrum E(k) through the use of (3.7) where for realistic conditions we assumed the
divergence of the integral of (3.5) to be removed. A numerical solution of (4.5)–(4.6)
is shown in figure 2(b). The result no longer necessarily follows the σt scaling of the
simple approximation (3.10).

The error in assigning a conditionally averaged flow pattern to the actual flow
velocity in a given realization can be estimated as

e2 = 〈(v̌(r0 + r, t0 + τ)− v(r0 + r, t0 + τ))2〉
= 〈v2〉(1− R2

E(r, τ)). (4.7)

For small times and small spatial separations we have e2 ≈ 2〈v2〉(1 − RE(r, τ)), see
also (3.12). The error e is negligible in this limit. The maximum error e2 ≈ 〈v2〉 is
reached for large r or t where RE(r, t) vanishes. This maximum error is still only half
of the one obtained by the approximation estimated by (3.12).

We find that v̌(r, τ) as obtained from (4.4) goes to zero for r → ∞. Therefore řṽ(t)
increases only slowly as t→∞ with the present approximation (4.5). This observation
can be made from (4.5), but was also directly seen in our numerical solutions of the
equations, see also figure 3. For large times, the mean-square value 〈ř2

ṽ〉 is increasing
more slowly than the analytical result ∼ t obtained in (2.3). This limitation is expected
to be of little consequence, however, since the oscillating contribution from the Bessel
function in (4.6) makes the integral small even for finite values of řṽ .

The improvement of the analysis by introducing the conditionally averaged flow
can be substantiated by considering the mean-square error in using řṽ as an estimate
for the actual displacement r. Thus, with angle brackets denoting averages over ṽ we
find that e2

r ≡ 〈(řṽ(t) − r(t))2〉 for short times varies like e2
r ∼ t4 as in (3.13) since in

this limit 〈ř2
ṽ〉 ≈ 〈v2〉t2 so the t2-terms cancel as in (3.13). For large times on the other

hand e2
r is dominated by 〈r2〉 and we have e2

r ∼ t in this limit. We have no analytical
expression for intermediate times as we had for (3.13). It is evident that the improved
velocity estimate, v̌, is just as good as the one used in (3.13) for short times, and in
the long time limit it implies a considerably better estimate of the particle position
compared to (3.13), so the approach seems worthwhile pursuing.

The method outlined here can be generalized by imposing additional conditions
on one or more derivatives of the flow velocity at a reference point. The procedure
for obtaining the corresponding conditional averages is in principle straight forward
(Pécseli & Trulsen 1991a). It will be demonstrated in the following by a comparison
with numerical simulations that the lowest-order approximation derived here actually
gives quite satisfactory results.

The foregoing analysis is readily extended to the Lagrangian correlation functions.
First we consider a frozen flow where formally all vortices are considered fixed at
their (random) positions while continuing to ‘spin’. The Eulerian correlation function
RE(r) is now a function of spatial separations only. A test particle released in this
flow will undergo random displacements and a Lagrangian correlation function can
be defined for the velocity field sampled along its orbit. According to the previous
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Figure 4. Analytically obtained Lagrangian correlation functions, where the dotted line gives the
expression (3.11) based on the analysis of Wandel & Kofoed-Hansen while the solid line is obtained
by numerical solution of (4.9) together with (4.5). The analytical expression for the Lagrangian
integral time scale is complicated, but for the case shown by solid line we find numerically τL ≈ 0.120.

arguments the result is obtained following (4.6) as

RL(t) =
1

σ2

∫ ∞
0

kE(k)

∫ ∞
0

2(ṽ/σ2) exp(−(ṽ/σ)2)J0(křṽ(t))dṽdk, (4.8)

where řṽ(t) is determined by (4.5) with the time-independent RE(r) for the frozen flow
inserted.

Although often applied as a simple model, such a frozen flow cannot serve as an
illustration for physical flows since the individual vortices undergo random displace-
ments which are not basically different from that of a test particle. The result (4.8)
can be generalized by analogy to (3.11) to take into account the motion of vortices
by assuming the probability density for relative velocities between test particles and
vortices to be a Gaussian with standard deviation σ

√
2. The result is

RL(t) =
1

σ2

∫ ∞
0

kE(k)

∫ ∞
0

(ṽ/σ2) exp(− 1
2
(ṽ/σ)2)J0(křṽ(t))dṽdk, (4.9)

again with řṽ(t) determined as a solution of (4.5) and where RE(r, t) is a priori given
by the foregoing analysis. The result (4.9) is closely related to the Eulerian velocity
correlation at zero spatial separation, just as (3.10) is related to (3.11). In figure 4 we
show the result (4.9) as well as (3.11); they coincide for short time delays.

5. Numerical results
The model discussed in §1.1 was implemented numerically with periodic boundary

conditions. The displacements of a large number of mutually convecting vortices are
followed in time according to (1.9). The simulations are performed with a gridless
O(N2) code. This makes the simulations rather time consuming, but avoids numerical
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Figure 5. The solid line shows the distribution of the sum of the net number, n, of vortices
defined as

∑
i
Ai/ |Ai | within a square with area `2 = 1/4 for µ = 12. Asterixes give the value

of exp(−µ`2)In(−µ`2) as a function of n. The asymmetry of the distribution is a measure of the
statistical uncertainty of the result. The dotted line, with triangles for the analytical result, shows
the same distribution, in the same simulation, for a square with area `2 = 1.

diffusion which could invalidate the theoretical basis of the interpretation. The code
uses a predictor–corrector method for the temporal evolution based on a variable
timestep, which is determined by the smallest distance between any two vortices. The
accuracy of the calculations is followed by evaluating the Hamiltonian (1.12) at regular
time intervals. For convenience, the singularity of the K0-function is smoothed out by
a parabolic continuation within a small circle retaining a smooth first derivative at the
circle. This smoothing is not logically necessary, but without it we may encounter large
local flow velocities which necessitate unacceptably small timesteps for retaining the
accuracy of the calculations. In the wavenumber spectrum the smoothing removes the
energy in the largest wavenumbers, thus in effect corresponding to a truncation of the
spectrum. As emphasized in §1.1, the Hamiltonian property of the model is retained
for arbitrary functional variations of F in (1.12). This property is therefore not affected
by the smoothing of the K0(r)-function which enters the ideal model through (1.7).

In the initialization of the simulations we introduced vortices at positions deter-
mined by a standard random number generator. Placing vortices randomly but
grouped with equal polarities within a checkerboard pattern, large positive values for
the Hamiltonian can be obtained. Large negative values can be obtained by placing
vortices of opposite polarity pairwise with large separation between pairs, see also
Appendix B. The conservation of H given by (1.12) implies that such an ordering of
vortices is likely to be retained for large values of |H |. For the present study we
choose values of H close to zero, simply by repeating the initialization with new seeds
for the random number generator until a value of H within a prescribed range was
obtained.

The basic diagnostics used for analysing the results are probability densities for
the two components of the flow velocity and the longitudinal and lateral velocity
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N 1/λR A µ σs σs/σa S K

Rounding-off at radius 0.1

400 1.5 1.0 4 4.55 0.96 −0.0451 3.74

800 1.5
√

2/2 8 4.61 0.97 0.0018 3.44

1200 1.5
√

3/3 12 4.71 0.99 0.0159 3.20

1200 1.5
√

3/3 12 4.60 0.97 0.0110 3.12
1600 1.5 1/2 16 4.67 0.98 0.0343 3.02

Rounding-off at radius 0.05

200 1.5
√

2 8 5.71 1.03 0.0309 6.88
400 1.5 1.0 4 5.25 0.94 0.0229 4.65

800 1.5
√

2/2 8 5.67 1.03 −0.0211 3.78

800 1.5
√

2/2 8 5.57 0.99 −0.0326 4.12

1200 1.5
√

3/3 12 5.52 0.99 −2.9× 10−4 3.66

1200 1.5
√

3/3 12 5.40 0.96 1.5× 10−2 3.67

Table 1. Table of parameters for different simulations, where N is the number of vortices in the
central simulation cell, and σs, σa are the standard deviations for one velocity component from
simulations and analysis, respectively. Recall that here 〈v2〉 = 2σ2

s . Cases listed with the same set of
parameters, N, A and λR refer to different initializations of the random number generators.

correlations as functions of spatial and temporal separations. In addition figure 5
shows the distribution of the sum of the net number of vortices

∑
j Aj/|Aj | within

squares with area `2 and µ`2 = 4. For one vortex polarity only and with the
assumption of the vortices being statistically independent, the analytical result is the
binomial distribution

Pn = sn(1− s)N−n
(
N
n

)
,

where N is the total number of vortices in the simulation cell with area L2, and
s = (`/L)2 is the probability of actually finding a vortex in the assigned subarea `2.
In the limit where both N and L are large, the probability Pn is well approximated
by a Poisson distribution Pn = exp(−µ`2)(µ`2)n/n!. For the case where the vortices
take both polarities with equal probability and the vortices are of equal absolute
strengths, |Aj |= A, we find after some calculations the corresponding result to be
Pn = exp(−µ`2)In(µ`

2) obtained again by assuming independent vortex positions.
Asterixes in figure 5 represent the theoretical result. We note a quite satisfactory
agreement. This result can be considered as an indirect test of the assumption of
independent vortex positions.

In table 1 we show results obtained from the probability density for one velocity
component (ideally, they are the same for x- and y-components). We use the skewness
and kurtosis as indicators for the deviation from the ideal Gaussian distribution as-
sumed in the analysis. For the present case the skewness is practically vanishing while
a kurtosis of 3.62 is a sign of slightly enhanced probabilities for large velocity compo-
nents compared with a Gaussian distribution. Table 1 shows the root-mean-square,
σ, of one component of the velocity fluctuations for different µ. The corresponding
kurtosis, K , and skewness, S , are given as well. The vortex strength A is varied
together with vortex density µ so that µA2 remains constant. Consequently we expect
σ to remain constant for all µ, and K to approach the value 3 for large µ. For
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Figure 6. Eulerian correlation functions for velocity components obtained from the numerical
simulations. In (a) we show the longitudinal correlations, in (b) the lateral correlations.

small values of µ, the kurtosis begins to increase noticeably, indicating significantly
non-Gaussian fluctuations in velocity. We have S = 0 within the statistical uncertainty
for all densities.

In figures 6(a) and 6(b) we show longitudinal and lateral Eulerian velocity corre-
lations obtained from the simulations. Note that the lateral correlation function in
figure 6(b), taken at zero time delay, integrates to zero as expected. The correlation be-
tween two orthogonal velocity components was also obtained for varying spatial and
temporal separations. Ideally this correlation should be vanishing. Its actual value for
the present simulation was in the range ±0.4, much smaller than the r.m.s.-velocity.
This number is an indicator of the effect of finite record lengths in our calculations.
For comparison with the analytical results we show, in figure 7(a), the unnormalized
reduced Eulerian velocity correlation function RE . To facilitate the comparison with
the analytical results we show in figure 7(b) the Eulerian correlation as a function
of spatial separation for vanishing time delay with the analytical result given by the
dashed line. Similarly, figure 7(c) gives the Eulerian correlation function as a function
of time delay for vanishing spatial separation, again with the dashed line giving the
analytical result. Three simulation results are included to give an indication of the
statistical scatter. Two curves correspond to vortex densities of µ = 12, one is for
µ = 8, see also table 1. The agreement between the analytical and numerical results is
quite convincing. For lower vortex densities the agreement becomes noticeably worse
as expected since the assumed Gaussian velocity distribution no longer applies, see
also table 1.

Finally, figure 8 gives the unnormalized Lagrangian correlation function obtained
by following a large number of test particles in the flow for the entire duration of
the simulation. Also in this case three numerical curves are presented. The dashed
line gives for comparison our analytical result as obtained in §4. The agreement
between theoretical and numerical curves is not quite as good as in figure 7. For
small time delays the agreement is, however, better than it might appear since, for
the presentation, the Lagrangian correlation function was sampled with certain time
intervals (this does not affect the accuracy of the calculations). On the figure we
increased the time resolution for two of the cases shown. Concerning the Lagrangian
integral time scale, we find numerically τL = 0.082± 0.006 for the present parameters.
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Figure 7. The reduced unnormalized Eulerian correlation function is shown in (a) to be compared
with the analytical results in figure 2. In (b) the Eulerian correlation is shown as a function of
spatial separation for vanishing time delay. Similarly, (c) gives the Eulerian correlation function as a
function of time delay for vanishing spatial separation. The dashed lines give the analytical results.
In (b) and (c) three curves are shown for different simulations, with the heavy line corresponding
to (a).

5.1. Comparison between analytical and numerical results

From the value of the velocity correlations in figures 6(a) and 6(b) taken at zero
delays we note that the standard deviations of the two velocity components are
the same within a modest statistical uncertainty. The flow thus seems to have the
assumed isotropy. The standard deviation deduced from the Lagrangian correlation
function in figure 8 agrees with the corresponding results obtained from figure 7 in
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Figure 8. Unnormalized Lagrangian correlation function for the velocity sampled along test particle
trajectories. See figure 4 for comparison. Dashed line gives the analytical result (4.9) from §4. Three
curves are shown for different simulations, with the heavy line corresponding to figure 7(a).

agreement with the properties of incompressible flows. By comparing with figures 2
and 4 we find good agreement with the simple analytical results for this quantity, see
also table 1. More important, however, is the very satisfactory agreement between
the entire spatial and temporal variations of the analytical and numerical Eulerian
correlation functions from figures 2(b) and 7(a), respectively, with details highlighted
in figures 7(b) and 7(c). In particular the analytically obtained Eulerian length scale
`E ≈ 0.81 is reproduced within the statistical uncertainty. It is evident that the
result in figure 2(a) is adequate in predicting the short time variation of RE , but
fails otherwise. Concerning the Lagrangian correlations, we cannot claim the same
excellent agreement, the Lagrangian correlation time being somewhat overestimated
by our analytical results. Still, we find a satisfactory agreement with the simulations
by using the result (4.9) as compared to (3.11) based on the analysis of Wandel &
Kofoed-Hansen. Other methods, as discussed by for instance Gotoh et al. (1993),
have been able to give better agreement between analytical results and numerical
simulations for the Lagrangian correlations, but at the expense of a significant
complication of the analysis.

Finally, the time variation of 〈r2〉 is shown in figure 9 with solid lines for three
simulations. Interpreting figure 9 we recall the analytical result for the Lagrangian
integral time scale τL ≈ 0.120 which overestimates the numerically obtained 0.082,
see (2.3). For comparison, the dashed line shows the variation obtained from (2.2)
with the analytical form of RL(t) inserted. The agreement is quite good, but it should
be emphasized that this result concerns reduced information obtained by integrating
the Lagrangian correlation function. Evidently, it is a more stringent test of the
analysis directly to compare the theoretically obtained correlation functions with the
numerical results.
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Figure 9. The numerically obtained time variation of 〈r2〉 is given by the solid line on a double
logarithmic scale, the analytical result by a dashed line. Three numerical curves are shown for
different simulations, with the heavy line corresponding to figure 7(a). The dotted lines give the
slopes t2 and t respectively. In interpreting the figure recall the analytical values `E = 0.81 and
τL = 0.120.

6. Conclusions
In the present study we considered an autonomous vortex system which, in two

spatial dimensions, models random flows with turbulence-like features. A multi-vortex
simulation like the present one is a preferable alternative to a model consisting of
randomly phased propagating waves which in general have no relation to the basic
equations of the problem. Analytical results were obtained with the basic assumption
that vortices are randomly distributed at all times. This assumption cannot be exact
since the Hamiltonian property of the system imposes a correlation between all the
vortices. For large negative values of H there is large probability of finding in the
vicinity of any vortex another one with opposite polarity, see also the discussion in
Appendix B. For large positive values of H , on the other hand, vortices with same
polarity will be likely to cluster. For intermediate values, H ≈ 0, we expect that the
coupling between vortices is weak and therefore that the results of the first sections
apply. It can be argued that this part of our analysis assumes the average lifetime of
vortex pairs to be short. The good agreement between the analytical and numerical
results concerning r.m.s.-velocity fluctuation levels and spatial correlations can be
taken as an indication that the constraint imposed by constant H is not significant
for the spatial distributions of vortices as long as |H| is small. The results in figure 5
also support the assumption, since also in this case the analytical result is based on
a random and independent distribution of vortices.

Our analytical results allowed a prediction of the full space–time variation of the
Eulerian velocity correlation function without any free or adjustable parameters. We
found that the agreement with the numerical results was fully satisfactory in the limit
where the flow velocity at a given position is composed of contributions from many
overlapping vortices, leading to the Gaussian velocity distribution assumed in the
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analysis. For low densities, where the velocity probability density was significantly
non-Gaussian, as measured by the kurtosis of the distribution, the agreement be-
tween analytical and numerical results became progressively worse, as expected. The
agreement can, however, in that limit be substantially improved by making use of
the general form (3.1). That analysis is, however, outside the scope of the present
paper.

The analysis was extended to the Lagrangian correlation function, and acceptable
agreement between analytical and numerical results was obtained. It is noteworthy
that our analysis and simulations confirm that the Eulerian time scale is larger than its
Lagrangian counterpart, in agreement with the expectations of Weinstock (1976), for
instance. In particular the corresponding micro time-scales are related as τE ≈

√
2τL

to a first approximation. An alternative procedure for estimating the Lagrangian
micro time-scale described by Monin & Yaglom (1975) is based on calculating the
correlations of ∂tv+ v · ∇v in the Navier–Stokes equation, in terms of the correlations
of pressure and of viscosity. This procedure has to be reformulated for the present
problem where viscosity has been ignored.

The derivation of the Lagrangian correlation function for a frozen flow, like the
one discussed by e.g. Kraichnan (1970), is a straightforward generalization of the
derivation of the Eulerian correlation function. The generalization to the case with
moving basic vortices was obtained by modelling the probability distribution of the
relative velocities between vortices and test particles. This assumption cannot be
tested directly, but it seems to give good results for the Lagrangian micro time scale.
The disagreement for large time delays between our analytical result and those from
the simulation can originate either from a shortcoming in the expression for the
conditional particle displacement for large times, or alternatively from ignoring the
correlation in the probability density of the relative velocity between test particles and
vortices in the flow as outlined in §3.4, since these are the two central assumptions
made. As the analytical expression for the Eulerian correlation function also agrees
well with the numerical results for large time separations, the first one of these
approximations is unlikely to be of importance; it equally enters the derivation of
both Eulerian and Lagrangian correlations. The long tail in the analytical estimate
for the Lagrangian correlation which disagrees with the numerical result is therefore
most likely to be caused by the ignored velocity correlations, since this assumption
entered only the Lagrangian analysis.

The actual form of the analytical expression for the Lagrangian correlation function
allows an interpretation in terms of a wavenumber spectrum E(k) multiplied by a
time-varying filter. For instance, in the simple model (3.11) the filter is e−(σkt)2/2.
Consequently, 〈r2〉 = t2V2(t) with V2(t) = 2

∫ ∞
0
E(k)kC(σkt)dk where

C(σkt) =
1

t

∫ t

0

(1− τ/t)e−(σkτ)2/2dτ

=
e−(σkt)2/2

(σkt)2
− 1

(σkt)2
+

√
2π

2σkt
erf
(

1
2

√
2σkt

)
.

Also, the more general result (4.9) can formally be interpreted in terms of large
wavenumbers being filtered away for increasing times. For small times all Fourier
components contribute to RL(τ) and therefore to the mean-square particle displace-
ment 〈r2〉 in (2.2). At later times the contributions from the largest wavenumbers
are quenched by the filter, and ultimately only the smallest k contribute to the ran-
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dom displacement of the test particle with respect to its origin of release (Pécseli &
Mikkelsen 1985). From the definition of V, the requirement that E(k)→ 0 for k → 0
is evident. The unshielded vortex model fails to satisfy this requirement, as discussed
in different contexts by Taylor & McNamara (1971). A random flow generated by
a superposition of unshielded vortices has a long tail on the Lagrangian correlation
function which gives rise to a diffusion which is faster than t1/2.

The idea of turbulent diffusion being caused by successively larger and larger scales
seems intuitively appealing, but it must be emphasized that the Fourier components
are not to be interpreted as individually propagating weakly coupled waves. In the
present model and in the simulations only a large number of identical vortices are
present, and a particle is displaced as a result of the entire simultaneous contribution
from all the vortices.

The analysis can be systematically extended, although the practical problems in
doing so are not to be underestimated. Higher-order terms can be included in the
estimator for the conditional vortex trajectory, and the imposed conditions can be
extended. These corrections will depend on correlations of higher order, i.e. triple
correlations. Here, by retaining only the first terms, we attempted to optimize the
use of the information in the wavenumber power spectrum for estimating the full
space–time variation of the Eulerian velocity correlation function as well as the time
variation of its Lagrangian counterpart. The good overall agreement between the
numerical and analytical results also gives support to the basic idea of a closure based
on conditional statistics.

The present study was based on a Hamiltonian model which allowed a prediction
of wavenumber spectra as well as Eulerian and Lagrangian velocity correlations
for this two-dimensional random flow. The analysis is parameter-free in the sense
that once the basic vortex characteristics and a vortex density are chosen to set up
the simulation, then there are no free parameters left for adjusting the agreement
between analytical and numerical results. The present results can also be interpreted
as a prediction of these correlations, provided the wavenumber spectrum is a priori
given, for instance, from measurements. This property of the results remains to be
studied in detail. Numerical simulations combined with the appropriate analysis are
in progress.

We thank Professor M. Kono for valuable discussions. This work was supported
in part by the Norwegian Research Council for Science and the Humanities.

Appendix A. Conditional averaging
In this Appendix we summarize some aspects of the closure based on conditional

averaging discussed in the main text. First it may be worthwhile briefly to discuss
some basic properties of the vortex distribution function DN(r1, r2, . . . , rN, t) in a 2N-
dimensional phase-space, where rj is the Eulerian coordinate of the jth vortex at time
t. Liouville’s equation takes the form

∂DN

∂t
+

N∑
i=1

N∑
j=1

′∇i · (vi,jDN) = 0, (A 1)

where the prime indicates that j 6= i in the double summation. The normalization is∫
· · ·
∫ ∞
−∞DNdr1 · · ·drN = 1, with DN > 0. We have introduced vi,j ≡ vi(|rj − ri |) from

(1.11) with vi(| r |) = Ai∇F(| r |) × b̂. In general we cannot assume symmetry of the
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distribution function with respect to permutations of individual vortex positions

DN(r1, . . . , ri, . . . , rj , . . . , rN, t) = DN(r1, . . . , rj , . . . , ri, . . . , rN, t), (A 2)

since the vortices, labelled j and i can have different strengths Aj 6= Ai. For the
general case we have assumed that the A have a continuous distribution, including
both signs. Without the assumption (A 2), however, little can be done to reduce
(A 1). Here it is therefore assumed that all Aj = A, and that (A 2) is indeed fulfilled.
Introducing the standard notation

fs(r1, r2, . . . , rs, t) =As

∫
· · ·
∫ ∞
−∞
DN(r1, r2, . . . , rN, t)drs+1 · · ·drN

with A being the area of the system, (A 1) is integrated to give the well-known
expression

∂fs

∂t
+

s∑
i=1

s∑
j=1

′∇i · (vi,jfs) +
(N − s)
A

s∑
i=1

∇i ·
∫ ∞
−∞
vi,s+1fs+1drs+1 = 0. (A 3)

For large N and small s the approximation (N − s)/A ≈ µ is used. By normalizing
distance with the Rossby radius λR a small expansion parameter 1/(µλ2

R) can be
identified. Ignoring vortex correlations by approximating

f2(r1, r2, t) ≈ f1(r1, t)f1(r2, t), (A 4)

the equation for f1 is obtained in the form

∂f1

∂t
+ v · ∇f1 = 0, (A 5)

with v(r1, t) = µ
∫ ∞
−∞ v1,2f1(r2, t)dr2. Explicit use has been made of the incompressibility

of the flow. The result (A 5) is the continuity equation for the plane perpendicular to
Ω. For cases where the A can assume a finite number of values a condition similar to
(A 2) can be imposed on each vortex type. With correlations ignored, ultimately (A 5)
is obtained as a general result. Details of these arguments are given by for instance
Novikov (1975) or Montgomery (1975). The independence assumption (A 4) means
that the evolution of the probability density for the vortex with label 1 is independent
of the actual presence of another one at position r2. Explicit use of this assumption
was made in the main text.

The nonlinear equation (A 5) can be solved in special cases only. A consider-
able simplification is obtained by assuming that the statistical properties of the flow
v are given a priori. The dispersion of one vortex in this flow can be analysed.
This vortex can then be interpreted as a passive test particle. The argument can be
substantiated by noting that in the limit of many overlapping vortices the contribution
of one can be removed from the series (1.9) without noticeable consequences for the
statistical properties of the flow as such. A simplified analysis of the dynamics of
randomly distributed vortices was discussed by Kono & Horton (1991). For randomly
varying velocity fields an approximate solution can be obtained by considering first
a conditioned representation of v. Assume that the velocity field is known with
certainty at a reference position r0 at a reference time t0. The entire flow field can
then be estimated subject to this condition. This estimate is denoted v̌. The actual
(conditioned) flow field then becomes v(r, t)c = v̌(r, t) + ϑ(r, t) as before, where ϑ(r, t)
is a random correction, subject to the condition ϑ(r0, t0) = 0.
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We now look for a solution for the conditionally averaged Green function. The
Green function, Gc, for individual realizations is fluctuating over the conditionally
selected subensemble with the basic equation being ∂tGc+(v̌(r, t)+ϑ(r, t)) · ∇Gc = 0 for
the conditionally selected subensemble with initial condition Gc(r, t0 | r0, t0) = δ(r−r0).
Introducing the decomposition into averaged and fluctuating parts Gc and g, we have
the equations

∂Gc

∂t
+ v̌ · ∇Gc = −〈ϑ · ∇g〉c (A 6)

with initial condition Gc(r, t0 | r0, t0) = δ(r − r0), and

∂g

∂t
+ v̌ · ∇g + ϑ · ∇Gc = −ϑ · ∇g + 〈ϑ · ∇g〉c (A 7)

with initial condition g(r, t0 | r0, t0) = 0. The subscript c on the averaging serves as
a reminder that the averaging is to be carried out over the conditionally selected
subensemble. For the general case the lowest-order solution is obtained when the
right-hand side of (A 7) is ignored, retaining only the coupling between fluctuations
and averaged quantities in that equation (Orszag 1969). Then (A 7) can be solved to
give the approximation

∂Gc(r, t | r0, t0)

∂t
+v̌(r, t) · ∇Gc(r, t | r0, t0)

=

∫ t

t0

ds

∫ ∞
−∞

dξ∇G0(r, t | ξ, s) · 〈ϑ(r, t)ϑ(ξ, s)〉c · ∇ξGc(ξ, s | r0, t0), (A 8)

with the lowest-order Green function G0 satisfying the equation

∂G0(r, t | r0, t0)

∂t
+ v̌(r, t) · ∇G0(r, t | r0, t0) = 0. (A 9)

With the appropriate initial condition, the equation for G0 can be solved to give

G0(r, t | r0, t0) = δ

(
r − r0 −

∫ t

t0

u(r(τ), τ)dτ

)
, (A 10)

where u(r(t), t) = v̌(r0 −
∫ t
t0
v̌(r(τ), τ)dτ, t) with dr(t)/dt = v̌(r, t). The right-hand

side of (A 8) can be simplified somewhat by use of (A 10). Finally, the averaged
unconditioned Green function is obtained from Gc by averaging over the imposed
conditions, assuming that their probability density is known.

The analysis assumes expressions for the conditional averages v̌(r, t) and
〈ϑ(r, t)ϑ(ξ, s)〉c to be explicitly known. As discussed in §4 the first of these can
be expressed to a first approximation in terms of the two-point two-time correla-
tion function. Similarly we obtain 〈ϑ(r, t)ϑ(ξ, s)〉c = 〈v(r, t)cv(ξ, s)c〉c − v̌(r, t)v̌(r, t), by
expressing

Řjk(r0 + ρ, t0 + t, r0 + ξ, t0 + s)

≡ 〈vj(r0 + ρ, t0 + t)cvk(r0 + ξ, t0 + s)c〉c
= Qjk(ρ, t, ξ, s) + Sjk`(ρ, t, ξ, s)ṽ`(r0, t0)

+Tjk`m(ρ, t, ξ, s)ṽ`(r0, t0)ṽm(r0, t0) . . . ,

where ṽk(r0, t0) is the kth component of the conditioned velocity vector and v(r, t)c is
again the velocity in one realization of the conditioned subensemble, v(r0, t0)c = ṽ.
The notation is chosen to emphasize that the conditionally selected subensemble is
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in general neither stationary nor homogeneous. The elements of Qjk , the coefficient
tensor Sjk`, as well as higher-order coefficients are found by minimizing

e2
jk = 〈(Řjk(r0 + ρ, t0 + t, r0 + ξ, t0 + s)− vj(r0 + ρ, t0 + t)vk(r0 + ξ, t0 + t))2〉

as in §4, see also Adrian (1977). For the present problem the first term in the series
will no longer suffice as an approximation. The procedure is discussed more generally
by Pécseli & Trulsen (1991a) although that work did not distinguish fluctuations in
the conditionally selected subensemble. Their results are, however, easily modified.
Diffusion of conditionally released particles was also discussed by Philip (1968).

The simplest case is the random convection model, with v = v1 =const. in
each realization but randomly varying over the ensemble, corresponding to a simple
Galileian translation of each individual realization. Then v̌(r, t) = v1 and ϑ = 0.
Consequently Gc(r, t | r0, t0) = δ(v1(t− t0) + r − r0). The statistical distribution of the
velocities, P (v1), is assumed to be known. It can be measured, predicted by a model
as in §4, or known to be a Gaussian from first principles. The unconditioned averaged
Green function is then obtained by averaging over all possible conditions, here as
G =

∫
GcP (v1)dv1 = P ((r − r0)/(t− t0))/(t− t0). This is however the exact result for

this particular case, which can be solved directly from the basic equation. The results
(A 8) and (A 9) with (A 10) thus give the exact result when applied to the random
convection model mentioned before, just as the corresponding equations do when
applied to the random acceleration problem discussed by Pécseli & Trulsen (1991a).
It is plausible that the shortcomings of the Eulerian direct interaction approximation
(EDIA) in treating random Galileian translations (Kraichnan 1964; Leslie 1973) can
be remedied by using a conditionally selected subensemble.

A considerable generalization and improvement can be expected by replacing G0 in
(A 8) by the transition probability Gc itself. The arguments are quite similar to those
put forward by Orszag (1969) in discussions of the random-coupling model, and they
will not be given here. This expected improvement will however be obtained at the
expense of a nonlinear equation for Gc.

The unconditioned Green function is obtained by averaging Gc over all realizations
of the imposed conditions, which quite generally will be on v(r0, t0), ∇v(r0, t0), . . .,
requiring the relevant joint probability densities to be known. The conditional averages
are in principle measurable quantities, but it is a great practical simplification that
they can expressed in terms of correlation functions as shown by an example in §4.
More general cases were discussed by Pécseli & Trulsen (1991a) in terms of series
expansions as in §4. In particular, Pécseli & Trulsen (1991b) compared the analytically
obtained estimates with actual results from a numerical simulation and found that
even for significantly non-Gaussian cases a few terms in the series expansion would be
sufficient. It is important that the correlations and probability densities entering the
construction for these higher-order corrections are Eulerian, i.e. even in the absence
of a priori analytical expressions they are amenable to straightforward measurements,
at least within some uncertainty. Although the procedure outlined here is in principle
feasible for any set of imposed conditions, it is evidently of great practical advantage
that the simplest condition suffices, i.e. the convergence of the method seems to be
rapid.

The approximation used in §4 consists of approximating Gc by G0, since it was
argued that, at least for small times and spatial separations, the error on the estimate
was small. It is an interesting question how much the results would be improved by use
of the first-order smoothing approximation and, ultimately, by the random-coupling
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approximation. We shall not deal with theses problems here, but only mention that
the analysis can be generalized to inhomogeneous and anisotropic conditions as well.
The conditional averages are readily modified although then the relevant correlations
will depend on both spatial coordinates. Also, non-stationary conditions can be
considered with additional complications in the analysis.

Appendix B. Comments on double vortex systems
The analysis in the main part of the paper was explicitly restricted to the case

where the Hamiltonian was close to zero. Only in this case can it be argued that
the correlation between vortices can be ignored to a first approximation. Large
negative values of the Hamiltonian can be analysed by somewhat similar arguments,
but the results cannot be obtained in a simple closed form. It may be instructive
to discuss this limiting case also to emphasize the differences from the one already
considered. In the foregoing analysis, the basic building stone of the flow field was
the individual vortex described by the K0-function, apart from the rounding-off at
the origin. By an analysis entirely similar to the one used before we may obtain the
wavenumber spectrum for a system derived by a random superposition of double
vortices consisting of two single vortices of opposite polarity a distance p apart. The
initial orientation of the vortex pairs is assumed uniformly distributed over angles
with respect to any coordinate-axis. Again it is simplest to derive the correlations of
the stream function variation first. The associated variation of one basic vortex pair
is AF(r + 1

2
p)− AF(r − 1

2
p). The result is

RΦ(ξ) = 2

[
R(ξ)− 1

2π

∫ 2π

0

R
((
ξ2 + p2 + 2p cos θ

)1/2
)

dθ

]
, (B 1)

where R(ξ) = µA2
∫ ∞
−∞ F(r)F(r − ξ)dr. The integration over θ comes from the

averaging over all dipole orientations. From (B 1) the velocity correlation tensor is
readily obtained.

The full space–time variation of the correlation function of the stream function is
easily obtained since each double vortex has a constant velocity, predetermined by
its distance p, i.e. vp = (|A|/2πλR)K1(p/λR). This is the major difference from the
problem considered previously, where the basic structure did not have a propagation
of its own, only one due to the combined effect of the others. For the present case
we obtain

RE(r, t) =
1

σ2

∫ ∞
0

E(k)J0(kr)J0(kvpt)kdk , (B 2)

with E(k) obtained as the Fourier transform of (B 1). The velocity probability densities
of the flow, P (vx) and P (vy), are readily derived from (3.1). In the present case the
density µ evidently has to be small in order to retain long-lived double vortices.
Consequently, P (vx) and P (vy) are not close to Gaussian distributions.

The result (B 1) is applicable only in somewhat extreme cases where the double
vortices do not interact upon collisions to change p, or never collide at all. In
reality, after some time and a large number of collisions, the internal distances will
be statistically distributed. The evolution of the distribution of pair separations, p,
will depend on the constraints imposed by the conserved quantities for the system,
H in particular. Given this distribution, the analysis can then be made complete,
at least for a dilute gas of double vortices, by averaging over all p. We cannot,
however, predict this distribution from first principles. It is on the other hand
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Figure 10. Distribution of the internal separation, p, of double vortices obtained after the relaxation
of a system where p was initially distributed uniformly in the interval [0.1; 0.4], for a value of H � 0.
Distributions at many timesteps are averaged. The histogram is normalized to unit area, and can
be interpreted as a probability density for vortex separations, p, which we normalized by L/(2N)1/2,

where 2N is the number of vortices in the system. The vortex amplitudes are ±
√

2 with N = 100
giving a density of 1/2. The dotted line gives the best fit for a Rayleigh distribution.

measurable with a result shown in figure 10. Apparently the probability density P (p)
is well approximated by a Rayleigh distribution, given by a dotted line, although
we see no a priori reason to expect this. The figure shown is representative of all
our simulations concerning this particular problem. In all cases we find that the
Rayleigh distribution gives a good overall fit, but the ‘tail’ is in most cases slightly
over-represented.
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